

NAG C Library Function Document

nag_zsteqr (f08jsc)

1 Purpose

nag_zsteqr (f08jsc) computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix which has been reduced to tridiagonal form.

2 Specification

```
void nag_zsteqr (Nag_OrderType order, Nag_ComputeZType compz, Integer n,
                 double d[], double e[], Complex z[], Integer pdz, NagError *fail)
```

3 Description

nag_zsteqr (f08jsc) computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric tridiagonal matrix T . In other words, it can compute the spectral factorization of T as

$$T = Z\Lambda Z^T,$$

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ_i , and Z is the orthogonal matrix whose columns are the eigenvectors z_i . Thus

$$Tz_i = \lambda_i z_i, \quad i = 1, 2, \dots, n.$$

The function stores the real orthogonal matrix Z in a **complex** array, so that it may also be used to compute all the eigenvalues and eigenvectors of a complex Hermitian matrix A which has been reduced to tridiagonal form T :

$$\begin{aligned} A &= QTQ^H, \text{ where } Q \text{ is unitary,} \\ &= (QZ)\Lambda(QZ)^H. \end{aligned}$$

In this case, the matrix Q must be formed explicitly and passed to nag_zsteqr (f08jsc), which must be called with **compz** = Nag_UpdateZ. The functions which must be called to perform the reduction to tridiagonal form and form Q are:

full matrix	nag_zhetrd (f08fsc) + nag_zungtr (f08ftc)
full matrix, packed storage	nag_zhptrd (f08gsc) + nag_zupptr (f08gtc)
band matrix	nag_zhbtrd (f08hsc) with vect = Nag_FormQ

nag_zsteqr (f08jsc) uses the implicitly shifted QR algorithm, switching between the QR and QL variants in order to handle graded matrices effectively (see Greenbaum and Dongarra (1980)). The eigenvectors are normalized so that $\|z_i\|_2 = 1$, but are determined only to within a complex factor of absolute value 1.

If only the eigenvalues of T are required, it is more efficient to call nag_dsterf (f08jfc) instead. If T is positive-definite, small eigenvalues can be computed more accurately by nag_zpteqr (f08juc).

4 References

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

Greenbaum A and Dongarra J J (1980) Experiments with QR/QL methods for the symmetric triangular eigenproblem *LAPACK Working Note No. 17 (Technical Report CS-89-92)* University of Tennessee, Knoxville

Parlett B N (1998) *The Symmetric Eigenvalue Problem* SIAM, Philadelphia

5 Parameters

1: **order** – Nag_OrderType *Input*

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: **order** = Nag_RowMajor or Nag_ColMajor.

2: **compz** – Nag_ComputeZType *Input*

On entry: indicates whether the eigenvectors are to be computed as follows:

if **compz** = Nag_NotZ, only the eigenvalues are computed (and the array **z** is not referenced);

if **compz** = Nag_InitZ, the eigenvalues and eigenvectors of T are computed (and the array **z** is initialised by the routine);

if **compz** = Nag_UpdateZ, the eigenvalues and eigenvectors of A are computed (and the array **z** must contain the matrix Q on entry).

Constraint: **compz** = Nag_NotZ, Nag_UpdateZ or Nag_InitZ.

3: **n** – Integer *Input*

On entry: n , the order of the matrix T .

Constraint: **n** ≥ 0 .

4: **d**[*dim*] – double *Input/Output*

Note: the dimension, *dim*, of the array **d** must be at least $\max(1, n)$.

On entry: the diagonal elements of the tridiagonal matrix T .

On exit: the n eigenvalues in ascending order, unless **fail** > 0 (in which case see Section 6).

5: **e**[*dim*] – double *Input/Output*

Note: the dimension, *dim*, of the array **e** must be at least $\max(1, n - 1)$.

On entry: the off-diagonal elements of the tridiagonal matrix T .

On exit: the array is overwritten.

6: **z**[*dim*] – Complex *Input/Output*

Note: the dimension, *dim*, of the array **z** must be at least

$\max(1, \mathbf{pdz} \times n)$ when **compz** = Nag_UpdateZ or Nag_InitZ;

1 when **compz** = Nag_NotZ.

If **order** = Nag_ColMajor, the (i, j) th element of the matrix Z is stored in **z**[($j - 1$) \times **pdz** + $i - 1$] and if **order** = Nag_RowMajor, the (i, j) th element of the matrix Z is stored in **z**[($i - 1$) \times **pdz** + $j - 1$].

On entry: if **compz** = Nag_UpdateZ, **z** must contain the unitary matrix Q from the reduction to tridiagonal form. If **compz** = Nag_InitZ, **z** need not be set.

On exit: if **compz** = Nag_InitZ or Nag_UpdateZ, the n required orthonormal eigenvectors stored as columns of **z**; the i th column corresponds to the i th eigenvalue, where $i = 1, 2, \dots, n$, unless **fail** > 0 .

z is not referenced if **compz** = Nag_NotZ.

7:	pdz – Integer	<i>Input</i>
On entry: the stride separating matrix row or column elements (depending on the value of order) in the array z .		
<i>Constraints:</i>		
	if compz = Nag_UpdateZ or Nag_InitZ , pdz $\geq \max(1, n)$;	
if compz = Nag_NotZ , pdz ≥ 1 .		
8:	fail – NagError *	<i>Output</i>
The NAG error parameter (see the Essential Introduction).		

6 Error Indicators and Warnings

NE_INT

On entry, **n** = $\langle \text{value} \rangle$.

Constraint: **n** ≥ 0 .

On entry, **pdz** = $\langle \text{value} \rangle$.

Constraint: **pdz** > 0 .

NE_ENUM_INT_2

On entry, **compz** = $\langle \text{value} \rangle$, **n** = $\langle \text{value} \rangle$, **pdz** = $\langle \text{value} \rangle$.

Constraint: if **compz** = **Nag_UpdateZ** or **Nag_InitZ**, **pdz** $\geq \max(1, n)$;

if **compz** = **Nag_NotZ**, **pdz** ≥ 1 .

NE_CONVERGENCE

The algorithm has failed to find all the eigenvalues after a total of $30 \times n$ iterations. In this case, **d** and **e** contain the diagonal and off-diagonal elements, respectively, of a tridiagonal matrix orthogonally similar to T . $\langle \text{value} \rangle$ off-diagonal elements have not converged to zero.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle \text{value} \rangle$ had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix $T + E$, where

$$\|E\|_2 = O(\epsilon)\|T\|_2,$$

and ϵ is the **machine precision**.

If λ_i is an exact eigenvalue and $\tilde{\lambda}_i$ is the corresponding computed value, then

$$|\tilde{\lambda}_i - \lambda_i| \leq c(n)\epsilon\|T\|_2,$$

where $c(n)$ is a modestly increasing function of n .

If z_i is the corresponding exact eigenvector, and \tilde{z}_i is the corresponding computed eigenvector, then the angle $\theta(\tilde{z}_i, z_i)$ between them is bounded as follows:

$$\theta(\tilde{z}_i, z_i) \leq \frac{c(n)\epsilon\|T\|_2}{\min_{i \neq j} |\lambda_i - \lambda_j|}.$$

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the other eigenvalues.

8 Further Comments

The total number of real floating-point operations is typically about $24n^2$ if **compz** = **Nag_NotZ** and about $14n^3$ if **compz** = **Nag_UpdateZ** or **Nag_InitZ**, but depends on how rapidly the algorithm converges. When **compz** = **Nag_NotZ**, the operations are all performed in scalar mode; the additional operations to compute the eigenvectors when **compz** = **Nag_UpdateZ** or **Nag_InitZ** can be vectorized and on some machines may be performed much faster.

The real analogue of this function is **nag_dsteqr** (f08jec).

9 Example

See Section 9 of the documents for **nag_zungtr** (f08ftc), **nag_zupgtr** (f08gtc) or **nag_zhbtrd** (f08hsc), which illustrate the use of this function to compute the eigenvalues and eigenvectors of a full or band Hermitian matrix.
